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Extensions of a Devroye-Lugosi theorem

A. Berlinet1 and I. Vajda2

Abstract. This paper deals with the problem of selection for each observed data the
better of two given estimators of the true probability measure. Such a problem was posed
for the first time by Devroye and Lugosi who proposed a feasible suboptimal selection
(called Scheffé selection) as an alternative to the optimal but practically nonfeasible se-
lection. The optimality was considered with respect to the estimation error given by the
total variation distance. They proved that the Scheffé selection guarantees in typical sit-
uations better rate of convergence of the total variation error to zero than any of the two
initially given estimates. This result was based on a theorem establishing an inequality
between the total variation errors of the Scheffé selection and optimal selection. In this
paper we extend this theorem to more general φ–divergence distances in two ways. Our
first extension estimates the more general φ-divergence errors of the Scheffé selection of
Devroye and Lugosi. The second one extends the Scheffé selection rule to the more general
φ-divergence error criteria and estimates the corresponding φ-divergence errors. For the
space and capacity reasons, we do not deal in this paper with the rates of convergence of
the corresponding φ–divergence errors.

AMS 1991 subject classification: 62G05.

Key Words: Estimation of probability distributions, Selection of the better of two es-
timates, Divergence error criteria, Optimal and suboptimal selections, Asymptotic opti-
mality of the suboptimal selection.

1 Introduction and basic concepts

Consider observations X1, . . . , Xn i.i.d. by a probability measure µ on the Borel σ-algebra
Bd of subsets of the Euclidian space Rd and let µn defined by

µn(A) =
1

n

n∑
i=1

I (Xi ∈ A) , A ∈ Bd (1)

be the standard empirical distribution on Bd based on these observations and µ
(1)
n , µ

(2)
n

any two probability measures on Bd based on these observations and used to estimate the
unknown probability measure µ (e.g. a histogram estimate and a kernel estimate). This

paper studies the φ-divergence error criteria Dφ(µ
(k)
n , µ) and the rules

µCn =

{
µ

(1)
n if C(X1, . . . , Xn) is satisfied

µ
(2)
n otherwise.

(2)

1I3M, UMR CNRS 5149, University of Montpellier II, Place Bataillon,
34095 Montpellier Cedex, France.

2Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic,
182 08 Prague.
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for selection of better of the estimates µ
(1)
n , µ

(2)
n based on given criteria C(X1, . . . , Xn)

depending on observations X1, . . . , Xn. Obviously, the optimal selection is

µ(0)
n =





µ
(1)
n if Dφ

(
µ

(1)
n , µ

)
< Dφ

(
µ

(2)
n , µ

)

µ
(2)
n otherwise.

(3)

Let us now turn attention to a given pair of probability measures µ0, µ on Bd. It
is known (see e.g. Liese and Vajda (1987, 2006) that the restrictions µ0,S , µS of these
measures on a sub-σ-algebra S ⊂ Bd decreases the φ-divergence. Our present paper deals
with the special situations where the restrictions µn,Sn , µSn of the measures µn, µ on a
given sequence of sub-σ-algebras Sn ⊂ Bd satisfy the asymptotic relation

Dφ (µn,Sn , µSn) = o
(
Dφ

(
µ(0)

n , µn

))
for n →∞ (4)

i.e. where Dφ (µn,Sn , µSn) tends to zero faster than Dφ

(
µ

(0)
n , µn

)
. Alongside with the

practically unfeasible optimal selection (3) we study the feasible suboptimal selection

µ∗n =





µ
(1)
n if Dφ

(
µ̄

(1)
n , µ̄n

)
< Dφ

(
µ̄

(2)
n , µ̄n

)

µ
(2)
n otherwise.

(5)

Our main result is the inequality

Dφ(µ
∗
n, µ) ≤ 3Dφ(µ

(0)
n , µ) + 2Dφ (µn,Sn , µSn) . (6)

proved here for all initial estimates µ
(1)
n , µ

(2)
n dominated by the Lebesgue measure on Rd

and all metric divergences Dφ. This inequality demonstrates that in the situations under
consideration the practically feasible suboptimal estimates µ∗n achieve the same rate of

convergence of the error to zero as the practically unfeasible optimal estimates µ
(0)
n .

Devroye and Lugosi (2001) proved that there exist situations where (4) holds for any

initial estimates µ
(1)
n , µ

(2)
n with Lebesque densities on Rd and they proved the inequality

(6) for the total variation error criterion

V (µ(k)
n , µ) =

∫

Rd

|f (k)
n (x)− f(x)|dx

where f
(k)
n , f are Lebesque densities of µ

(k)
n , µ. The total variation V (µ

(k)
n , µ) is nothing but

the special φ-divergence criterion Dφ(µ
(k)
n , µ) for the function φ(t) = |t− 1|. Hence in this

paper we extend the inequality of Devroye and Lugosi to arbitrary metric φ-divergences.
For this purpose also the so far known set of metric divergences was extended in Vajda
(2008).

Devroye and Lugosi (2001) considered the estimates µ
(1)
n , µ

(2)
n represented by densities

f (i)
n = f (i)

n (·; X1, . . . , Xn), i ∈ {1, 2} (7)
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leading to the optimal practically unfeasible selection density

f (0)
n =





f
(1)
n if

∫
|f (1)

n − f | <

∫
|f (2)

n − f |,

f
(2)
n otherwise.

(8)

They proposed a practically feasible approximation to this selection called Scheffé estimate

obtained by the rule

f ∗n =





f
(1)
n if

∣∣∣∣
∫

An

f (1)
n − µn(An)

∣∣∣∣ <

∣∣∣∣
∫

An

f (2)
n − µn(An)

∣∣∣∣ ,

f
(2)
n otherwise

(9)

where

An = A
(
f (1)

n ; f (2)
n

)
=

{
x : f (1)

n (x) > f (2)
n (x)

}
(10)

is the so-called Scheffé set for the ordered pair (f
(1)
n , f

(2)
n ) and µn is the empirical probabil-

ity measure (1). Chapter 6 of Devroye and Lugosi (2001) contains a number of arguments
in favour of the Scheffé selection rule (9). However, the next example demonstrates that
the use of the Scheffé rule is problematic in some cases. As above, I (·) denotes the
indicator function.

Example 1. Consider the uniform density f on the closed interval [c, c + 1] ⊂ R with
unknown parameter c and independent ordered sample Xn:1, . . . , Xn:n generated by f .
For the estimates

f (1)
n = I(Xn:1 ≤ x ≤ Xn:1 + 1) and f (2)

n = I(Xn:n − 1 ≤ x ≤ Xn:n)

of f it holds

An = (Xn:n, Xn:1 + 1], µn(An) = 0∫

An

f (1)
n = Xn:1 + 1−Xn:n and

∫

An

f (2)
n = 0

so that

∣∣∣∣
∫

An

f (1)
n − µn(An)

∣∣∣∣ = |Xn:1 + 1−Xn:n| > Xn:1

exceeds with probability 1 the absolute deviation
∣∣∣∣
∫

An

f (2)
n − µn(An)

∣∣∣∣ = 0.

Consequently the Scheffé rule selects the estimate f
(2)
n achieving the L1-error

∫ |f (2)
n −f | =
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2 (1−Xn:n) whereas the estimate f
(1)
n achieves the error

∫ |f (1)
n − f | = 2Xn:1, so that is

strictly better in the L1-sense with the probability Pr(Xn:1 + Xn:n < 1) = 1/2 for all
n = 1, 2, .... Hence in this situation the Scheffé rule selects the better of the estimates
f

(1)
n , f

(2)
n with probability 1/2, i.e. it does not bring the selection closer to the optimality

than the tossing of a coin.

The book of Devroye and Lugosi (2001) presents a systematic theory dealing with
properties and applications of the Scheffé selection f ∗n. This theory is based on Theorem 6.1
which compares the errors

∫
|f (0)

n − f | = min

{∫
|f (1)

n − f |,
∫
|f (2)

n − f |
}

and

∫
|f ∗n − f |.

This fundamental theorem can be given the form of the inequality

∫
|f ∗n − f | ≤ 3

∫
|f (0)

n − f |+ 4

∣∣∣∣
∫

An

f − µn(An)

∣∣∣∣ (11)

where An is the Scheffé set for (f
(1)
n , f

(2)
n ). This inequality states that the selection f ∗n can

achieve the error level 3
∫ |f (0)

n −f | up to the universal error term appearing on the right.
This inequality was applied not only in Chapters 7 – 17 of the Devroye-Lugosi book, but
also in subsequent papers, among them in Berlinet, Biau and Rouvière (2005 a, b).

The latter papers observed that the L1-error criterion
∫ |f − g| for the estimates g

being formally probability densities is a special case of the more general φ-divergence
criterion Dφ(f, g) defined for arbitrary probability densities f, g by the formula

Dφ(f, g) =

∫
g φ

(
f

g

)
. (12)

Here φ(t) is nonnegative and convex in the domain t ∈ (0,∞), strictly convex and van-
ishing at the point t = 1 (for details about formula (12) and the basic properties of
φ-divergences used below, see Csiszár (1967a) or Liese and Vajda (1987, 2006).

The L1-error is the φ-divergence for φ(t) = |t− 1|, called total variation and denoted
by V (f, g), i. e.

V (f, g) =

∫
|f − g| = 2 sup

A∈Bd

∣∣∣∣
∫

A

f −
∫

A

g

∣∣∣∣ . (13)

Other examples are the squared Hellinger distance

H2(f, g) = 2

∫ (√
f −√g

)2

for φ(t) = 2
(√

t− 1
)2

, (14)

the squared LeCam distance

LC2(f, g) =
1

2

∫
(f − g)2

f + g
for φ(t) =

(t− 1)2

2(t + 1)
, (15)
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and the information divergence

I(f, g) =

∫
f ln

f

g
for φ(t) = t ln t. (16)

A natural motivation for the alternative φ-divergence error criteria is the need to
work with estimates convergent in topologies stronger than that induced by the total
variation (cf. Csiszár 1967b and Österreicher and Vajda (2003)). This paper introduces
a new motivation achieved in Example 3 below by extending the framework of Example
1 through admitting non-uniform densities with unit supports on R. In this extended
setting Example 3 demonstrates that for some densities f the alternative φ-divergence
error criteria exhibit with positive probabilities optimality of the estimate g = f (1) at the
same time when the L1-error exhibits the optimality of g = f (2).

Since the optimality of the Scheffé estimates f ∗n is perceived differently by different φ-
divergence error criteria, it is important to see whether or how the fundamental Devroye–
Lugosi inequality (11) can be extended from the total variation criteria

V (f, f ∗n) =

∫
|f ∗n − f | and V (f, f (0)

n ) =

∫
|f (0)

n − f | (17)

to the more general φ-divergence criteria

Dφ(f, f ∗n) =

∫
f ∗n φ

(
f

f ∗n

)
and Dφ(f, f (0)

n ) =

∫
f (0)

n φ

(
f

f
(0)
n

)
. (18)

This problem is solved in Section 3.

Section 4 introduces a replacement of the Scheffé L1-based selection rule by a more gen-
eral φ-divergence selection rule and solves a problem parallel to that of Section 3, namely
whether or how the Devroye–Lugosi inequality (11) can be extended to the alternatively
selected estimates and to the more general φ-divergence criteria.

It remains to be seen whether the statistical applications of the new selection rules in-
troduced in Sections 3 and 4 are as rich as those given by Devroye and Lugosi in their book
: selection from an infinite class, minimum distance estimates using Vapnik–Chervonenkis
classes, in particular Yatracos classes with finite Vapnik–Chervonenkis dimension, choice
of kernels, partitions or bandwidths, wavelet systems or other orthonormal basis.

For obvious reasons, in this paper the attention is restricted to the estimates (7) which
are a.s. probability densities themselves.

2 Metric divergence criteria of errors

Let us start with the following basic properties of φ-divergences needed in the sequel:
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(i) The range of values is

0 ≤ Dφ(f, g) ≤ φ(0) + φ∗(0) (19)

where φ(0), φ∗(0) are smooth extensions of φ(t), φ∗(t) = t φ(1/t) to the point t = 0. In

(19) Dφ(f, g) = 0 if and only if f = g a. s. and Dφ(f, g) = φ(0) + φ∗(0) if (for finite
φ(0) + φ∗(0) if and only if) f⊥g (disjoint supports).

(ii) The symmetry Dφ(f, g) = Dφ(g, f) for all f, g holds if and only if φ = φ∗ for the
adjoint function φ∗ defined in (i).

(iii) The monotonicity property deals with relations between the φ-divergences

Dφ(µ, ν) ≡ Dφ(f, g)

of distributions

µ(A) =

∫

A

f, ν(A) =

∫

A

g, A ∈ Bd

and the φ-divergences of restrictions of these distributions on sub-σ-algebras S ⊂ Bd of

the Borel σ-algebra Bd defined by formula

Dφ(µ, ν|S) = Dφ(fS , gS) =

∫
gS φ

(
fS
gS

)

for S-measurable versions fS , gS of densities f, g. It states that the ordering

Dφ(f, g|S) ≡ Dφ(µ, ν|S) ≤ Dφ(µ, ν) ≡ Dφ(f, g) (20)

holds. If the equality in (20) takes place then we say that S preserves the φ-divergence

Dφ(f, g). It is known (see e.g. Corollary 1.29 in Liese and Vajda (1987)) that if a sub-
σ-algebra S is sufficient for the pair {f, g} then the equality takes place in (20), i.e. the
sufficient S always preserves the φ-divergence Dφ(f, g).

(iv) Finally, the spectral representation says that if a sub-σ-algebra S ⊂ Bd is generated
by a finite or countable Bd-measurable partition P of Rd (spectrum of S, in symbols we
write S = S(P)) then

Dφ(f, g|S) =
∑
A∈P

∫

A

g .φ

(∫
A

f∫
A

g

)
. (21)

Example 2. Consider for every A ∈ Bd the partition P = (A,Ac) of Rd and the P-
generated (or, more simply, A-generated) algebra

SA := S (A,Ac) ⊂ Bd (22)

consisting of the sets Rd, A, Ac, ∅. Then the general spectral representation (21) implies
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V (f, g|SA) =
∑

B∈{A,Ac}

∣∣∣∣
∫

B

f −
∫

B

g

∣∣∣∣ = 2

∣∣∣∣
∫

A

f −
∫

A

g

∣∣∣∣ . (23)

From (13) and (23) we see that the fundamental Devroye–Lugosi inequality (11) can be

given the form

V (f, f ∗n) ≤ 3V (f, f (0)
n ) + 2V (µ, µn|SAn) (24)

for the Scheffé set An of the estimates f
(1)
n and f

(2)
n .

If A in (23) is the Scheffé set A(f ; g) of f and g then the absolute difference on the
right of (23) can be replaced by the ordinary difference. Moreover, it is seen from (13)
that then SA preserves V (f, g) so that the formula (23) can be extended and specified as
follows

V (f, g|SA) = V (f, g) = 2

(∫

A

f −
∫

A

g

)
. (25)

The following sections extend the Devroye–Lugosi theorem (11), or equivalently (24),
to the error criteria D(f, g) for probability densities f, g on (Rd,Bd) satisfying similar
metric properties as the total variation criterion V (f, g) namely

the reflexivity

D(f, g) = 0 if and only if f = g a. s., (26)

the symmetry

D(f, g) = D(g, f) for all f, g (27)

and the triangle inequality

D(f, g) ≤ D(f, h) + D(h, g) for all f, g, h. (28)

We restrict ourselves to the metric divergence criteria defined as powers

D(f, g) = Dφ(f, g)π, π > 0

of φ-divergences Dφ(f, g) satisfying (26)-(28). These φ-divergences achieve finite upper

bounds

φ(0) + φ∗(0) = 2φ(0) < ∞ (29)

(see (ii) above for the equality and Csiszár (1967b) for the finiteness).

To provide a sufficiently rich class of such criteria, let us introduce the class of φα-
divergences

Dα(f, g) = Dφα(f, g), α ∈ R. (30)
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Here the convex functions φα(t) are given in the domain t > 0 by the formula

φα(t) =
| α |

α(α− 1)

(
2α−1(t + 1)− (t1/α + 1)α

)
(31)

if α(α− 1) 6= 0, and by the corresponding limits

φ0(t) = | t− 1 | /2, (32)

φ1(t) = t ln t + (t + 1) ln
2

t + 1
(33)

otherwise. The subclass of these divergences for α ≥ 0 was proposed (with a different

parametrization) by Österreicher and Vajda (2003). The extension to α < 0 was proposed
recently by Vajda (2008). It is easy to verify for all f, g the formulas

D0(f, g) =
1

2
V (f, g) (total variation, (13)), (34)

D2(f, g) =
1

2
H2(f, g) (Hellinger, (14)), (35)

D−1(f, g) =
1

4
LC2(f, g) (Le Cam, (15)) (36)

and

D1(f, g) = I (f, (f + g)/2) + I(g, (f + g)/2). (37)

In the Appendix we demonstrate that the powers

D(f, g) := Dα(f, g)1/ max{2,α}, α ∈ R (38)

of the divergences (30) satisfy (26) – (28), i. e. that they are metric divergence criteria.

3 Scheffé selection rule

This section extends the fundamental Devroye–Lugosi inequality (11) from the total varia-
tion error criteria (17) to the more general φ-divergence criteria (18). A strong motivation

for this extension is the fact that the optimality of the Scheffé selection f ∗n ∈
{

f
(1)
n , f

(2)
n

}

is evaluated differently by different φ-divergence error criteria. The next example demon-
strates that the anisotony between two such criteria may be total in the sense that f ∗n
is worse of f

(1)
n , f

(2)
n in φ1-divergence error (as e.g. in Example 1) and at the same time

better of them in φ2-divergence error.

Example 3. Consider the setting of Example 1 with arbitrary densities f supported by
[0, 1] , and self-adjoint nonnegative convex functions

φ(t) = t φ

(
1

t

)
≡ φ∗(t)
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leading to symmetric φ-divergences the powers of which satisfy the triangle inequality.
Without loss of generality we can assume φ(0) = 1. Then

Dφ(f
(1)
n , f) = Dφ(f, f (1)

n ) =

∫
f (1)

n φ

(
f

f
(1)
n

)

=

∫ Xn:1

0

0 φ

(
f

0

)
+

∫ 1

Xn:1

φ (f) +

∫ Xn:1+1

1

1 φ

(
0

1

)

=

∫ Xn:1

0

f φ∗
(

0

f

)
+

∫ 1

Xn:1

φ (f) +

∫ Xn:1+1

1

φ (0)

= φ (0)

∫ Xn:1

0

f +

∫ 1

Xn:1

φ (f) + φ (0) Xn:1

= Xn:1 + F (Xn:1) +

∫ 1

Xn:1

φ (f) .

Similarly,

Dφ(f
(2)
n , f) = Dφ(f, f (2)

n ) =

∫
f (2)

n φ

(
f

f
(2)
n

)

= 2− (Xn:n + F (Xn:n)) +

∫ Xn:n

0

φ (f) .

Therefore

Dφ(f
(1)
n , f) ≶ Dφ(f

(2)
n , f)

if and only if

Xn:1 + F (Xn:1) +

∫ 1

Xn:1

φ (f) ≶ 2− (Xn:n + F (Xn:n)) +

∫ Xn:n

0

φ (f) . (39)

We shall present a density f satisfying for two concrete functions φ the conflicting in-
equalities (39).

Restrict ourselves for simplicity to the family of self-adjoint convex functions

φα(t) = |tα − 1|1/α , 0 < α ≤ 1,

leading to the so-called Matusita divergences

Mα(f, g) =

∫
|fα − gα|1/α , 0 < α ≤ 1,

among them

M1(f, g) =

∫
|f − g| ≡ V (f, g).

The powers Mα(f, g)α are metrics. Further, consider the density function f : R −→ R,
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defined by

f(x) =





1 if 0 ≤ x < 1/2
2(2x− 1) if 1/2 ≤ x ≤ 1

0 if x /∈ [0, 1]

for which (39) takes on the form

Xn:1 + F (Xn:1) +

∫ 1

Xn:n

φα (f) ≶ 2− (Xn:n + F (Xn:n)) +

∫ Xn:1

0

φα (f) . (40)

Finally, restrict ourselves to the class of the ∆-samples X1, . . . , Xn defined by the property

1/2−Xn:1 = Xn:n − 1/2 ≡ ∆ ∈ (0, 1/4)

and denote respectively L(α, ∆) and R(α, ∆) the above left and right hand side in (40).

Then

L(α, ∆) = 1− 2∆ +

∫ 1/4

∆

(1− (4u)α)1/α du +

∫ 1/2

1/4

((4u)α − 1)1/α du

so that

lim
α↓0

L(α, ∆) = 1− 2∆ and L(1, ∆) = 2∆2 − 3∆ +
5

4
.

On the other hand

R(α, ∆) = −2∆2 −∆ + 1

so that

L(1, ∆)−R(1, ∆) =

(
2∆− 1

2

)2

> 0

while for α > 0 small enough we get the opposite inequality

L(α, ∆)−R(α, ∆) < 0.

The last two inequalities hold also for all the ”approximately ∆-samples” X1, . . . , Xn de-

fined by the condition that 1/2 − Xn:1 and Xn:n − 1/2 are sufficiently close elements
of the open interval (0, 1/4). Under the given f, such samples appear with positive prob-
ability. Thus the present example fulfills the promised requirements.

Let us now turn to the main result of this section which is the following theorem. This
theorem and its proof refer to the lower and upper error bounds

Lφ(V ) ≤ Dφ(f, g) ≤ Uφ(V ) (41)

achieved for a given convex φ by the φ-divergences Dφ(f, g) on the class of densities f, g
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satisfying the total variation condition

V (f, g) = V, 0 ≤ V ≤ 2.

By Proposition 8.27 in Liese and Vajda (1987), the upper bound is for general φ given by

the formula

Uφ(V ) = V · cφ where cφ =
φ(0) + φ∗(0)

2
(cf. (19)) (42)

and the lower bound Lφ(V ) is convex and strictly increasing in the variable V from the
minimum Lφ(0) = 0 to the maximum Lφ(2) = φ(0) + φ∗(0) = 2cφ. Hence the strictly
increasing and concave inverse function

L−1
φ (D) : [0, 2cφ] −→ [0, 2] (43)

always exists. For φ such that the powers Dφ(f, g)π are metrics on the space of densities

f, g (29) implies

cφ = φ(0) < ∞. (44)

Theorem 1. Let f be an estimated distribution on Rd, f
(0)
n , f

(1)
n and f

(2)
n the estimates

considered in (7), (8) with the corresponding Scheffé set An and f ∗n the Scheffé estimate
resulting from the selection rule (9). Then for every metric divergence criterion D(f, g) =
Dφ(f, g)π

D (f ∗n, f) ≤ D
(
f (0)

n , f
)

+ 2πcπ
φ

[
L−1

φ

(
D

(
f (0)

n , f
)1/π

)
+ 2

∣∣∣∣
∫

An

f − µn(An)

∣∣∣∣
]π

(45)

where L−1
φ and cφ are given by (43) and (44)

Proof. Consider the random variables

Eij = I
(
f ∗n = f (i)

n , f (0)
n = f (j)

n

)
where

2∑
i,j=1

Eij = 1. (46)

By the triangle inequality and symmetry of D(f, g), and by the definition of Eii,

D (f ∗n, f) ≤ D
(
f (0)

n , f
)

+
2∑

i,j=1

D
(
f ∗n, f (0)

n

) Eij

= D
(
f (0)

n , f
)

+ D
(
f ∗n, f (0)

n

) E21 + D
(
f ∗n, f (0)

n

) E12. (47)

It suffices to prove that for i 6= j

D
(
f ∗n, f (0)

n

) Eij ≤ 2πcπ
φ

[
L−1

φ

(
D

(
f (0)

n , f
)1/π

)
+ 2

∣∣∣∣
∫

An

f − µn(An)

∣∣∣∣
]π

Eij. (48)

11



We restrict ourselves to E21. For E12 the proof is similar. By the definition of E21 and (42),

(43),

D
(
f ∗n, f (0)

n

) E21 = D
(
f (1)

n , f (2)
n

) E21 ≤
[
cφ V

(
f (1)

n , f (2)
n

)]π E21

= cπ
φ V

(
f (1)

n , f (2)
n |SAn

)π E21

≤ cπ
φ

[
V

(
f (1)

n , f |SAn

)
+ V

(
f (2)

n , f |SAn

)]π E21

≤ cπ
φ

[
V

(
f (1)

n , f
)

+ V
(
µ(2)

n , µn|SAn

)
+ V (µn, µ|SAn)

]π E21

≤ 2πcπ
φ

[
V

(
f (0)

n , f
)

+ V (µn, µ|SAn)
]π E21

≤ 2πcπ
φ

[
L−1

φ

(
D

(
f (0)

n , f
)1/π

)
+ V (µn, µ|SAn)

]π

E21.

where we bounded the sum of the total variations in the third line above by

V
(
f (1)

n , f
)

+ V
(
µ(1)

n , µn|SAn

)
+ V (µn, µ|SAn)

≤ V
(
f (1)

n , f
)

+ V
(
µ(1)

n , µ|SAn

)
+ 2V (µn, µ|SAn)

≤ 2V
(
f (1)

n , f
)

+ 2V (µn, µ|SAn) .

This completes the proof.

The next corollary reformulates the result of Theorem 1 in a simpler but slightly
weaker form.

Corollary 1. For 0 < π ≤ 1, under the assumptions and notations of Theorem 1,

D (f ∗n, f) ≤ 21−πcπ
φ

[
3L−1

φ

(
D

(
f (0)

n , f
)1/π

)
+ 4

∣∣∣∣
∫

An

f − µn(An)

∣∣∣∣
]π

(49)

Proof. Clear from (45) by taking into account the inequalities

D
(
f (0)

n , f
) ≤ Uφ

(
V

(
f (0)

n , f
))π

=
[
cφV

(
f (0)

n , f
)]π ≤

[
cφL

−1
φ

(
D

(
f (0)

n , f
)1/π

)]π

obtained from (41), (43) and also the inequality

ψπ(a) + ψπ(b) ≤ 21−πψπ(a + b)

obtained from Jensen’s inequality for the concave function ψπ(x) = xπ.

The next example demonstrates that Theorem 1 generalizes the Devroye and Lugosi
inequality (11).

Example 4. Put D(f, g) = D0(f, g) = V (f, g)/2 (cf. (34)). Then c0 = φ0(0) = 1/2,

L0(V ) = U0(V ) =
V

2
, 0 ≤ V ≤ 2

12



and L−1
0 (D) = 2D. Hence Theorem 1 implies

D0 (f ∗n, f) ≤ D0

(
f (0)

n , f
)

+ 2D0

(
f (0)

n , f
)

+ 2

∣∣∣∣
∫

An

f − µn(An)

∣∣∣∣
or, equivalently,

V (f ∗n; f) ≤ 3V
(
f (0)

n , f
)

+ 4

∣∣∣∣
∫

An

f − µn(An)

∣∣∣∣
which coincides with (11) and (24).

The next example illustrates contributions of Theorem 1 and its Corollary 1 beyond
the framework of Devroye and Lugosi.

Example 5. Put D(f, g) = D−1(f, g)1/2, i.e. take the LeCam error criterion LC(f, g)/2
(cf. (36)). Then parts (ii) and (iii) of Theorem A1 in the Appendix imply that c−1 = 1/8,
U−1(V ) = V/16 and

L−1(V ) =
1

2

(
1

2
−

[
1

1 + V/2
+

1

1− V/2

]−1
)

=
1

2

[
1

2
− 1− (V/2)2

2

]
=

(
V

4

)2

.

Therefore L−1
−1(D) = 4

√
D and for the Scheffé selection f ∗n of Devroye and Lugosi we get

from Theorem 1 the relation

D (f ∗n, f) ≤ D
(
f (0)

n , f
)

+

[
2

8

(
4D

(
f (0)

n , f
)

+ 2

∣∣∣∣
∫

An

f − µn(An)

∣∣∣∣
)]1/2

i. e.

LC (f ∗n, f) ≤ LC
(
f (0)

n , f
)

+

√
1

2
LC

(
f

(0)
n , f

)
+

1

8
|fn − µn(An)|

where An is the Scheffé set of the initial estimates f
(1)
n and f

(2)
n . Corollary 1 implies for

the same f ∗n and An as before the alternative inequality

D (f ∗n, f) ≤
(

2
3

8
4D

(
f (0)

n , f
)

+ 2
4

8

∣∣∣∣
∫

An

f − µn(An)

∣∣∣∣
)1/2

i. e.

LC (f ∗n, f) ≤
√

3

2
LC

(
f

(0)
n , f

)
+

1

4

∣∣∣∣
∫

An

f − µn(An)

∣∣∣∣.

We see that the rate of convergence of the Le Cam error LC (f ∗n, f) to zero guaranteed

by our theory for the Scheffé estimate is strictly below the rate of the Le Cam error

LC
(
f

(0)
n , f

)
achieved by the ideal estimate f

(0)
n . One can deduce from the known proper-

ties of the lower bound Lφ(V ) and its inverse L−1
φ (D) that similar result can be expected

also for other divergence errors Dφ (f ∗n, f) with φ strictly convex everywhere.
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4 Divergence selection rule

This section is a continuation of Section 3. Here the estimation errors are still evaluated
by the criteria of the type D(f, g) = Dφ(f, g)π, π > 0 but the Scheffé selection (9) of
Devroye and Lugosi (2001) is replaced by a more general selection rule. One arrives quite
naturally at such a generalization if one applies the same metric divergence criteria also
to the definitions of the optimal estimate f

(0)
n and its practical approximation f ∗n. In other

words, the generalization consists in the replacement of the L1-based definition (8) by the
divergence based definition

f (0)
n =





f
(1)
n if D

(
f

(1)
n , f

)
< D

(
f

(2)
n , f

)

f
(2)
n otherwise.

(50)

and the L1-based Scheffé selection rule (9) by the divergence selection rule

f ∗n =





f
(1)
n if D

(
µ

(1)
n , µn|Sn

)
< D

(
µ

(2)
n , µn|Sn

)

f
(2)
n otherwise.

(51)

The latter rule uses the empirical distribution µn defined by (??), the estimates

µ(i)
n (B) =

∫

E

f (i)
n , B ∈ Bd, i ∈ {1, 2}

of the probability distribution µ ∼ f, and the sub-σ-algebra Sn ⊂ Bd preserving the

divergence D
(
µ

(1)
n , µ

(2)
n

)
, i. e. satisfying the equality

D
(
µ(1)

n , µ(2)
n

)
= D

(
µ(1)

n , µ(2)
n |Sn

)
(cf. (20)), (52)

e.g. the intersection of all sub-σ-algebras S ⊂ Bd preserving this divergence.

A strong motivation for this extension is the fact that the Scheffé selection f ∗n ∈{
f

(1)
n , f

(2)
n

}
cannot be universally better of f

(1)
n , f

(2)
n with respect to all φ-divergence error

criteria. This was demonstrated by Example 3 in the previous section presenting density
f, estimates f

(i)
n = f

(i)
n (·; X1, . . . , Xn), and φ-divergences Dφi

(f, g), i ∈ {1, 2} admitting
with positive probability samples X1, . . . , Xn for which simultaneously

Dφ1(f
(1)
n , f) < Dφ1(f

(2)
n , f) and Dφ2(f

(1)
n , f) > Dφ2(f

(2)
n , f).

Next follows the main result of this section dealing with the concepts just introduced
above.

Theorem 2. The estimate f ∗n resulting from the metric divergence selection rule (51)
satisfies the inequality

D (f ∗n, f) ≤ 3D
(
f (0)

n , f
)

+ 2D (µ, µn|Sn) . (53)
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Proof. We can start with the equality (47) valid in the present situation as well. It
suffices to prove that for i 6= j

D
(
f ∗n, f (0)

n

) Eij ≤ 2
[
D

(
f (0)

n , f
)

+ D (µn, µ|Sn)
] Eij

where Eij is defined by (46) for f ∗n, f
(0)
n given by (50), (51). Using repeatedly the triangle

inequality and relations (52) and (20) we obtain

D
(
f ∗n, f (0)

n

) E21 = D
(
f (0)

n , f (2)
n

) E21 = D
(
f (1)

n , f (2)
n |Sn

) E21

≤ [
D

(
f (1)

n , f |Sn

)
+ D

(
f (2)

n , f |Sn

)] E21

≤ [
D

(
f (1)

n , f
)

+ D
(
µ(2)

n , µn|Sn

)
+ D (µn, µ|Sn)

] E21

≤ [
D

(
f (1)

n , f
)

+ D
(
µ(2)

n , µ|Sn

)
+ 2D (µn, µ|Sn)

] E21

≤ [
D

(
f (1)

n , f
)

+ D
(
µ(1)

n , µ|Sn

)
+ 2D (µn, µ|Sn)

] E21

≤ [
2D

(
f (1)

n , f
)

+ 2D (µn, µ|Sn)
] E21

= 2
[
D

(
f (0)

n , f
)

+ D (µn, µ|Sn)
] E21.

In the same manner we obtain

D
(
f ∗n, f (0)

n

) E12 ≤ 2
[
D

(
f (0)

n , f
)

+ D (µn, µ|Sn)
] E12

which completes the proof of (53).

The next corollary presents a different expression of the error term in (53).

Corollary 2. The estimate f ∗n resulting from the selection rule (51) for a metric diver-
gence D(f, g) = Dφ(f, g)π satisfies the inequality

D (f ∗n, f) ≤ 3D
(
f (0)

n , f
)

+ 2π+1cπ
φ sup

B∈Sn

∣∣∣∣
∫

A

f − µn(B)

∣∣∣∣
π

(54)

where f
(0)
n , f and Sn are the same as in Theorem 2 and cφ = φ(0) < ∞.

Proof. By Proposition 8.27 in Liese and Vajda (1987) and (13),

Dφ (µn, µ|Sn) ≤ cφ V (µn, µ|Sn) and V (µn, µ|Sn) = 2 sup
A∈Sn

|µ(A)− µn(A)| .

The rest is clear from Theorem 2 and (44).

As in the previous section, our first step is to verify that Theorem 1 generalizes the
Devroye–Lugosi result (11).
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Example 6. Putting D(f, g) = V (f, g) in Theorem 2 and using the fact that by (25)

the sub-σ-algebra SAn preserves the total variation V (f
(1)
n , f

(2)
n ) of the estimates f

(1)
n , f

(2)
n ,

we get

V (f ∗n, f) ≤ 3V
(
f (0)

n , f
)

+ 2V (µ, µn|SAn) .

This coincides with the equivalent form (24) of the Devroye-Lugosi inequality (11).

Most important from the point of view of applications is the complexity of the sub-σ-
algebra Sn ⊂ Bd which appears in the right-hand error terms of (53) and (54). It depends

on the complexities of the used error criterion D(f, g) and estimates f
(1)
n , f

(2)
n . In the

previous example we have seen that if D(f, g) is as simple as the total variation V (f, g),
then Sn is the simple σ-algebra SAn generated by just one set – the Scheffé set An of the

estimates f
(1)
n , f

(2)
n – irrespective of how complex these estimates are. In the following

example we shall see the opposite extreme, namely simple estimates f
(1)
n , f

(2)
n leading to

a simple σ-algebra Sn = SBn generated by just one set Bn specified by these estimates,
irrespective of how complex the divergence criterion D(f, g) is. More precisely, Bn does
not depend on this criterion at all.

Example 7. Let the sample X1, . . . , Xn be governed by a bell-shaped density f on R
and consider the sample mean and variance

µn =
1

n

n∑
i=1

Xi and σ2
n =

1

n

n∑
i=1

(Xi − µn)2,

and also the following central cover set

Bn = {x : |x− µn| < 3σn}. (55)

Let f be estimated by Cauchy type densities

f (1)
n (x) =

σn

π [σ2
n + (x− µn)2]

and

f (2)
n (x) = I(x ∈ Bn)

bσn

π[σ2
n + (x− µn)2]

(56)

where

b =

[
1− 2

(
1

2
− 1

π
arctg 3

)]−1

=
π

2 arctg 3
.

In (56) we used the fact that the condition I(x ∈ Bn) cuts away from f
(1)
n (x) two tail

probabilities of the size
∫ µn−3σn

−∞
f (1)

n =

∫ −3

−∞

dx

π[1 + x2]

=
1

2
+

1

π
arctg(−3) =

1

2
− 1

π
arctg 3
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so that the f
(1)
n -probability of the sample central cover set is 1/b. The likelihood ratio

f
(2)
n /f

(1)
n is piecewise constant,

f
(2)
n (x)

f
(1)
n (x)

=

{
b if x ∈ Bn

0 otherwise,

where b is the normalizing factor used in (56). Therefore the sub-σ-algebra SBn =

{R, Bn, Bc
n, ∅} ⊂ B generated by the central cover set Bn of (55) is sufficient for the

family {f (1)
n , f

(2)
n }. By what was said in Section 2, this means that SBn preserves for every

convex φ the φ-divergence Dφ(f
(1)
n , f

(2)
n ). In other words, the sub-σ-algebra Sn considered

in Theorem 2 and Corollary 2 is SBn . Hence, by Theorem 1 and formula (21), for every
metric divergence criterion D(f, g) = Dφ(f, g)π with π > 0

D (f ∗n, f) ≤ 3D
(
f (0)

n , f
)

+ 2


 ∑

B∈{Bn,Bc
n}

∫

B

f φ

(
µn(B)∫

B
f

)


π

. (57)

By Corollary 2, simpler but in general weaker variant of the result (57) is the inequality

D (f ∗n, f) ≤ 3D
(
f (0)

n , f
)

+ 2π+1cπ
φ(0)

∣∣∣∣
∫

Bn

f − µn(Bn)

∣∣∣∣
π

. (58)

Next follows a theorem which generalizes and specifies the phenomena observed in the
last example.

Theorem 3. If the metric divergence criterion D(f, g) is a φ-divergence power with
φ(t) strictly convex in the whole domain t > 0 then a sub-σ-algebra Sn ⊂ Bd preserves

D(f
(1)
n , f

(2)
n ) in the sense

D
(
f (1)

n , f (2)
n |Sn

)
= D

(
f (1)

n , f (2)
n

)

if and only if Sn is sufficient for {f (1)
n , f

(2)
n }.

Proof. Let D(f
(1)
n , f

(2)
n ) = Dφ(f

(1)
n , f

(2)
n )π for some π > 0. By the Corollary 2 above, the

metricity of Dφ(f, g)π implies Dφ(f
(1)
n , f

(2)
n ) ≤ 2φ(0) < ∞. Hence, by Corollary 1.29 in

Liese and Vajda (1987), the equality Dφ(f
(1)
n , f

(2)
n ) = Dφ(f

(1)
n , f

(2)
n |Sn) takes place if and

only if Sn is sufficient.

From this theorem we see that functions φ strictly convex everywhere define the most
complex divergence criteria for which the σ-algebra Sn is simple only if the estimates
f

(1)
n , f

(2)
n are simple enough. Example 4 illustrated such situation.
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5 Appendix

For practical applications of the results of Sections 3 and 4 one needs concrete metric
divergence criteria D(f, g) = Dφ(f, g)π with known and simple upper and lower bound
Uφ(V ) and Lφ(V ) introduced in (41). For this purpose one can use the criteria from the
class

D(f, g) = Dα(f, g)π(α) for π(α) =
1

max{2, α} =





1
2

when −∞ < α ≤ 2

1
α

when α > 2.

(59)

introduced in (30) – (33). The following theorem summarizes basic relevant properties of

the divergences Dα(f, g). For the proof we refer to Vajda (2008).

Theorem A1.

(i) Dα(f, g) are φα-divergences with functions φα(t) strictly convex in the domain t > 0
when α 6= 0 and self-adjoint in the sense φα(t) = tφα(1/t) on this domain.

(ii) The lower bounds of the divergencesDα(f, g), α ∈ R under the constraint V (f, g) = V
are given for all 0 ≤ V ≤ 2 by the formulas

Lα(V ) =
|α|

α(α− 1)

(
2α −

[(
1 +

V

2

)1/α

+

(
1− V

2

)1/α
]α)

(60)

if α(α− 1) 6= 0 and otherwise by the corresponding limits

L0(V ) = V/2, L1(V ) =

(
1 +

V

2

)
ln

(
1 +

V

2

)
+

(
1− V

2

)
ln

(
1− V

2

)
. (61)

(iii) The upper bounds of the divergencesDα(f, g), α ∈ R under the constraint V (f, g) = V
are Uα(V ) = cαV where cα > 0 is continuous in the variable α ∈ R, given by the
formula

cα = φα(0) =





2α−1

|α|+ 1
when α < 0

ln 2 when α = 1

2α−1 − 1

α− 1
when α ≥ 0, α 6= 1.

(62)

(iv) The powers Dα(f, g)π(α) given in (59) are metrics in the space of probability densities
f, g.
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Remark. Putting α = 0 in (iv) of Theorem A1 one obtains among other results also
the inequality

√
D0(f, g) ≤

√
D0(f, h) +

√
D0(h, g)

for the particular divergence D0(f, g) = V (f, g)/2. This inequality is weaker than the

classical triangle inequality

D0(f, g) ≤ D0(f, h) +D0(h, g) (63)

obtained by applying the L1-norm argument to the total variation V (f, g). Using the

continuity of the divergences Dα(f, g) in the variable α ∈ R we can deduce from (63)
that more sophisticated arguments than those used to prove Theorem A1 lead to stronger
triangle inequalities also for the remaining divergences Dα(f, g), α ∈ R, in particular for
those with α close to 0.
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